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J. Phys. A: Math. Gen.29 (1996) 7177–7181. Printed in the UK

On the Fourier–Gauss transforms of someq-exponential
and q-trigonometric functions

N M Atakishiyev†‡
Instituto de Matematicas, UNAM, Apartado Postal 139-B, 62191 Cuernavaca, Morelos, Mexico

Received 6 September 1996, in final form 18 September 1996

Abstract. We examine the properties ofq-exponential andq-trigonometric functions, recently
introduced and discussed in the literature. It is shown that they are related to Jackson’s
q-analogues of the exponential and trigonometric functions by classical Fourier–Gauss
transformations.

The exponential function ez is known to possess the most remarkable properties of the
elementary functions of classical analysis. It represents an entire function in the complexz

plane, ez is its own derivative, and it obeys the addition law ez1+z2 = ez1ez2. Because of the
simple analytic behaviour of the exponential function, it is very frequently used in various
branches of mathematics. For our purposes it is sufficient to mention just two instances of
such applications: the exponential function serves as a kernel for the Fourier and Laplace
integral transforms and it forms a basis for constructing an exponential mapping from Lie
algebras to Lie groups.

To have the complete theory ofq-special functions [1–3] it is thus very important to
determine an appropriateq-extension of the exponential function. This problem has recently
attracted much attention in the literature [4–10]. The goal of this short paper is to examine
the properties ofq-exponential andq-trigonometric functions, discussed in [4–10]. It is
shown that they are related by classical Fourier–Gauss transformations to theq-analogues
of exponential and trigonometric functions, introduced earlier by Jackson [11].

We start with a two-parameterq-exponential function, defined [5] as

E IZ
q (x; a, b) :=

∞∑
n=0

qn2/4

(q; q)n

(
aq(1−n)/2 eiθ , aq(1−n)/2e−iθ ; q

)
n

bn (1)

wherex = cosθ, (a; q)0 = 1 and(a; q)n = ∏n−1
j=0(1−aqj ), n = 1, 2, 3, . . ., is theq-shifted

factorial with the convention(a1, . . . , ak; q)n = ∏k
j=1(aj ; q)n. Throughout this paper we

will employ the standard notations ofq-special functions [2]. Theq-exponential function
(1) is also expressible as a sum of two4φ3 basic hypergeometric series, i.e.

E IZ
q (x; a, b) = 4φ3

(
aq1/2eiθ , aq1/2e−iθ , q1/2eiθ /a, q1/2e−iθ /a

q1/2, −q1/2, −q
; q, a2b2

)

+ bq1/4

1 − q
(1 − 2ax + a2) 4φ3

(
aqeiθ , aqe−iθ , qeiθ /a, qe−iθ /a

q3/2, −q3/2, −q
; q, a2b2

)
.

(2)
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An important advance in the study of properties of theq-exponential function (1) was
achieved by Suslov, who proposed considering it as a function of two independent variables
x = cosθ andy = cosϕ and a parameterα by replacinga = −eiϕ andb = αe−iϕ in (1)
[10]. Then the function

Eq(x, y; α) := eq2(qα2) Eq2(−α2) E IZ
q (x; −eiϕ, αe−iϕ)

= eq2(qα2) Eq2(−α2)

×
∞∑

n=0

qn2/4

(q; q)n

(−q(1−n)/2ei(θ+ϕ), −q(1−n)/2ei(ϕ−θ); q)n (αe−iϕ
)n

(3)

is symmetric in the variablesx andy. Moreover, these variables are separated, i.e.

Eq(x, y; α) = Eq(x, 0; α) Eq(0, y; α) . (4)

Note that the normalization constanteq2(qα2) Eq2(−α2) in (3) is chosen in such a way that
Eq(0, 0; α) = 1 [10]; eq(z) andEq(z) are Jackson’sq-exponential functions [11]

eq(z) :=
∞∑

n=0

zn

(q; q)n
= (z; q)−1

∞ Eq(z) :=
∞∑

n=0

qn(n−1)/2

(q; q)n
zn = (−z; q)∞ . (5)

As a q-analogue of the addition law for the exponential function ez, the relation (4)
reveals the importance of the particular case of (3), given explicity by

Eq(x, 0; α) = Eq(x; α) = eq2(qα2) Eq2(−α2) E IZ
q (x; −i, −iα)

= eq2(qα2) Eq2(−α2)

[
2φ1(−qe2iθ , −qe−2iθ ; q; q2, α2)

+2q1/4α

1 − q
x 2φ1(−q2e2iθ , −q2e−2iθ ; q3; q2, α2)

]
. (6)

Once the relation betweenEq(x; α) and E IZ
q (x; −i, −iα) is clear, one can use the known

properties of the latter [5, 9]. Firstly,E IZ
q (x; −i, −iα) can also be considered as a generating

function for the continuousq-Hermite polynomials [5]. Therefore, as follows from (6),

Eq(x; α) = eq2(qα2)

∞∑
n=0

qn2/4αn

(q; q)n
Hn(x|q) . (7)

Secondly, relation (7) defines the Fourier–Gauss transformation properties ofEq(x; α).
Indeed, since the continuousq-Hermite polynomialsHn(x|q) andq−1-Hermite polynomials
hn(x|q) := i−nHn(ix|q−1) are related to each other by the Fourier–Gauss transform [12]:

Hn(sinκs|q) e−s2/2 = in√
2π

qn2/4

∞∫
−∞

hn(sinhκr|q) e−isr−r2/2 dr q = exp(−2κ2) (8)

one can substitute (8) in the right-hand side of (7) and sum overn by the aid of the
generating function

∞∑
n=0

tnqn(n−1)/2

(q; q)n
hn(sinhκr|q) = Eq(te

κr ) Eq(−te−κr ) (9)
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for the q−1-Hermite polynomialshn(x|q) [13]. This yields (cf [9])

Eq(sinκs; α)e−s2/2 = eq2(qα2)√
2π

∞∫
−∞

eisr−r2/2 Eq(iαq1/2e−κr ) Eq(−iαq1/2eκr ) dr . (10)

Observe that this integral representation may be considered as an analytic continuation of
Eq(x; α), initially defined by (6) for the values of|α| < 1 only. Due to the factoreq2(qα2),
the q-exponential functionEq(x; α) is meromorphic in the complexα plane with simple
poles atα(±)

n = ±q−(n+1/2) , n = 0, 1, 2, . . . (cf [5]).
The q-analogues of the trigonometric functions cosωx and sinωx are respectively

defined [10] as

Cq(x; ω) = 1
2[Eq(x; iω) + Eq(x; −iω)] (11a)

Sq(x; ω) = 1

2i
[Eq(x; iω) − Eq(x; −iω)] . (11b)

Combining equation (11) with the Fourier–Gauss transform (10) gives

Cq(sinκs; ω) e−s2/2 = eq2(−qω2)√
2π

∞∫
−∞

Eq(ωq1/2e−κr ) Eq(−ωq1/2eκr ) e−r2/2 cosrs dr

(12a)

Sq(sinκs; ω) e−s2/2 = eq2(−qω2)√
2π

∞∫
−∞

Eq(ωq1/2eκr ) Eq(−ωq1/2e−κr ) e−r2/2 sinrs dr .

(12b)

Another two integrals, involving theq-exponential functionEq(x; α), follow from the
Ramanujan-type orthogonality relation

∞∫
−∞

Hm(sinκs|q) Hn(sinκs|q) e−s2
cosκs ds = √

π q1/8 (q; q)m δmn (13)

for the continuousq-Hermite polynomials [12]. Using the generating function (7) in (13)
leads to

∞∫
−∞

Hm(sinκs|q) Eq(sinκs; α) e−s2
cosκs ds = √

π q
1
4 (m2+ 1

2 ) αm eq2(qα2) . (14)

Applying the same equation (7) to (14) gives

∞∫
−∞

Eq(sinκs; α) Eq(sinκs; β) e−s2
cosκs ds = √

π q1/8 eq2(qα2) eq2(qβ2) Eq(q
1/2αβ) .

(15)

Relations (10), (12), (14) and (15) are consistent with the fact that theq-exponential
function Eq(x; α) is defined by (6) on theq-quadratic lattice. The key point in deriving
these formulae is to represent the lattice asxq(s) = sinκs, q = exp(−2κ2).
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In the case of theq-linear latticexq(s) = eiκs theq-analogue of the exponential function
ez has the form [10]

εq(z) :=
∞∑

n=0

qn(n−1)/4

(q; q)n
zn . (16)

The Fourier–Gauss transformation properties of thisq-extension of the exponential function
have been studied in [14]. The relations between (16) and theq-exponential functionsEq(z)

andeq(z) are

εq(αeiκs) e−s2/2 = 1√
2π

∞∫
−∞

eisr−r2/2 Eq(q
1/4αeκr ) dr (17)

εq(αe−κs) e−s2/2 = 1√
2π

∞∫
−∞

eisr−r2/2 eq(q
−1/4αeiκr ) dr . (18)

Sincee1/q(z) = Eq(−qz) and ε1/q(z) = εq(−qz), the Fourier–Gauss transforms (17) and
(18) are interrelated by the substitutionq → 1/q (i.e. κ → iκ).

Analogues of the trigonometric functions cosωx and sinωx on the q-linear lattice
cq(ωx) andsq(ωx) [4, 10] are defined in terms ofεq(z) by the relations

cq(ωx) = 1
2[εq(iωx) + εq(−iωx)] (19a)

sq(ωx) = 1

2i
[εq(iωx) − εq(−iωx)] (19b)

respectively. Therefore, from equation (17) it follows that

cq(ωeiκs) e−s2/2 = 1√
2π

∞∫
−∞

eisr−r2/2 Cosq(q
1/4ωeκr ) dr (20a)

sq(ωeiκs) e−s2/2 = 1√
2π

∞∫
−∞

eisr−r2/2 Sinq(q
1/4ωeκr ) dr . (20b)

Here Jackson’sq-trigonometric functionsCosq(z) andSinq(z) are defined as [11]

Cosq(z) = 1
2[Eq(iz) + Eq(−iz)] Sinq(z) = 1

2i
[Eq(iz) − Eq(−iz)] . (21)

In a like manner, for the linear latticex1/q(s) = e−κs from (18) we have

cq(ωe−κs) e−s2/2 = 1√
2π

∞∫
−∞

eisr−r2/2 cosq(q
−1/4ωeiκr ) dr (22a)

sq(ωe−κs) e−s2/2 = 1√
2π

∞∫
−∞

eisr−r2/2 sinq(q
−1/4ωeiκr ) dr (22b)

where [11]

cosq(z) = 1
2[eq(iz) + eq(−iz)] sinq(z) = 1

2i
[eq(iz) − eq(−iz)] . (23)
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