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Abstract. We examine the properties gfexponential and-trigonometric functions, recently
introduced and discussed in the literature. It is shown that they are related to Jackson's
g-analogues of the exponential and trigonometric functions by classical Fourier—-Gauss
transformations.

The exponential function<eis known to possess the most remarkable properties of the
elementary functions of classical analysis. It represents an entire function in the camplex
plane, é is its own derivative, and it obeys the addition law'& = e1e®2. Because of the
simple analytic behaviour of the exponential function, it is very frequently used in various
branches of mathematics. For our purposes it is sufficient to mention just two instances of
such applications: the exponential function serves as a kernel for the Fourier and Laplace
integral transforms and it forms a basis for constructing an exponential mapping from Lie
algebras to Lie groups.

To have the complete theory gfspecial functions [1-3] it is thus very important to
determine an appropriateextension of the exponential function. This problem has recently
attracted much attention in the literature [4-10]. The goal of this short paper is to examine
the properties ofj-exponential and;-trigonometric functions, discussed in [4-10]. It is
shown that they are related by classical Fourier—Gauss transformations geatfedogues
of exponential and trigonometric functions, introduced earlier by Jackson [11].

We start with a two-parameterexponential function, defined [5] as
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will employ the standard notations gfspecial functions [2]. Theg-exponential function
(1) is also expressible as a sum of twy basic hypergeometric series, i.e.
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An important advance in the study of properties of thexponential function (1) was
achieved by Suslov, who proposed considering it as a function of two independent variables
x = cos? andy = cosy and a parametez by replacinga = —€¥ andb = we™ in (1)

[10]. Then the function

E(x,y; ) = eqz(q(xz) qu(—otz) Eéz(x; —&¥ ae?)

= eqz(qaz) E,. (—052)
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is symmetric in the variables andy. Moreover, these variables are separated, i.e.
Eg(x,yra) =&,(x,0;0) &0, y; ). 4)
Note that the normalization consta@t(qaz) qu(—az) in (3) is chosen in such a way that
&,(0,0; ) = 1 [10]; ¢,(z) and E,(z) are Jackson'g-exponential functions [11]
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As a g-analogue of the addition law for the exponential functién tee relation (4)
reveals the importance of the particular case of (3), given explicity by

Ex,Qa)=E(xa)= eqz(qozz) qu(—ocz) sz(x; —i, —ia)
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Once the relation betweef)l(x; «) and Eq’Z(x; —i, —ia) is clear, one can use the known

properties of the latter [5, 9]. Firstl%z(x; —i, —ia) can also be considered as a generating
function for the continuoug-Hermite polynomials [5]. Therefore, as follows from (6),
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Secondly, relation (7) defines the Fourier—Gauss transformation properti€s(xafo).
Indeed, since the continuoysHermite polynomials, (x|¢) andg~-Hermite polynomials
ha(x|q) :=i""H,(ix|¢g~") are related to each other by the Fourier—Gauss transform [12]:

E(x;a) = ep2(qa )Z

/4 p(sinhicr|q) €752 dr g =exp—22)  (8)
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one can substitute (8) in the right-hand side of (7) and sum avéy the aid of the
generating function

H,(sinks|g)e™* 2 =

o0 tnqn(nfl)/Z
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for the g~-Hermite polynomialsi, (x|g) [13]. This yields (cf [9])
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Observe that this integral representation may be considered as an analytic continuation of
&, (x; ), initially defined by (6) for the values dé| < 1 only. Due to the factoe,2(ga?),
the g-exponential functiort, (x; «) is meromorphic in the complex plane with simple
poles ate® = £4="+1/2 ', =0,1,2,... (cf [5]).

The g-analogues of the trigonometric functions aos and sinwx are respectively
defined [10] as

Cy(x; ) = 3[E,(x; w) + &, (x; —iw)] (11a)
S, 0) = 1,055 10) — £(x; —i0)]. (110)
Combining equation (11) with the Fourier—-Gauss transform (10) gives
i —s2/2 _ eqz(_qwz) [ 1/2 kr 1/2 4y o—12/2
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Another two integrals, involving thg-exponential functiort, (x; ), follow from the
Ramanujan-type orthogonality relation

o0
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for the continuous;-Hermite polynomials [12]. Using the generating function (7) in (13)
leads to

o0
/ H, (sinks|q) & (Sinks; o) e coscs ds = /7 g3+ g™ e 2(qa®). (14)
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Applying the same equation (7) to (14) gives

/ &, (sinks; a) &, (sinks; B) e cosks ds = J g8 eqz(qaz) eqz(q,Bz) Eq(ql/zot,B) .

(15)

Relations (10), (12), (14) and (15) are consistent with the fact thaytbgponential
function &, (x; «) is defined by (6) on theg-quadratic lattice. The key point in deriving
these formulae is to represent the latticexg§&) = sinks, ¢ = exp(—2«?).
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In the case of thg-linear latticex, (s) = €* the g-analogue of the exponential function

€ has the form [10]
00 n(n—1)/4
q
g,(2) i= 7", (16)
! ; (45 @n

The Fourier—Gauss transformation properties of ghextension of the exponential function
have been studied in [14]. The relations between (16) and-#vponential functiong, (z)
ande,(z) are
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Sinceey,(z) = E;(—qz) and ey, (z) = g,(—gz), the Fourier—Gauss transforms (17) and
(18) are interrelated by the substitutign— 1/q (i.e. x — ix).

Analogues of the trigonometric functions eas and sinwx on the g-linear lattice
¢;(wx) ands, (wx) [4, 10] are defined in terms af,(z) by the relations

cq(wx) = %[8q (iwx) + &4(—iwx)] (19a)
1 . .
sq(wx) = E[sq (iwx) — g4(—iwx)] (19b)
respectively. Therefore, from equation (17) it follows that

2 1 e
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T 1 .

sq(e) e’ 2 — Wi _/ ger—ri/2 Sinq(q1/4a)e’(’) dr. (20b)

Here Jackson’g-trigonometric functionsCos,(z) and Sin,(z) are defined as [11]

. . _ 1 : ,
Cosy(z) = L[E (i) + E;(—i2)] Sing(z) = E[Eq(lz) — E,(—i2)]. (21)
In a like manner, for the linear lattice,, (s) = €™ from (18) we have
O T .
co(we™)yes?= — / "2 cos, (¢~ Y4we* ") dr 22a
g(@0e™) Nz (4 ) (22a)
O T .
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q( ) 7 . n, (¢ ) (22)

where [11]

) . ) 1 . .
cos,(z) = 3[e,(iz) + e4(—iz)] siny (2) = 5.[e, (i2) — ey (=i2)] (23)
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